Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3.

نویسندگان

  • Ayesha Sultan
  • Min Luo
  • Qin Yu
  • Brigitte Riederer
  • Weiliang Xia
  • Mingmin Chen
  • Simone Lissner
  • Johannes E Gessner
  • Mark Donowitz
  • C Chris Yun
  • Hugo deJonge
  • Georg Lamprecht
  • Ursula Seidler
چکیده

BACKGROUND/AIMS Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. METHODS Detergent resistant membranes ("lipid rafts") were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3(-) mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. RESULTS NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. CONCLUSIONS The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA.

The activity of the sodium/hydrogen exchanger 3 (NHE3) isoform of the sodium/hydrogen exchanger in the brush-border membrane of the renal proximal tubule is tightly regulated. Recent biochemical and cellular experiments have established the essential requirement for a new class of regulatory factors, sodium/hydrogen exchanger regulatory factor (NHERF) and NHERF-like proteins, in cAMP-mediated i...

متن کامل

Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse.

In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studi...

متن کامل

The NHERF2 sequence adjacent and upstream of the ERM-binding domain affects NHERF2–ezrin binding and dexamethasone stimulated NHE3 activity

In the brush border of intestinal and kidney epithelial cells, scaffolding proteins ezrin, Na(+)-H(+) exchanger regulatory factor (NHERF)1 and NHERF2 play important roles in linking transmembrane proteins to the cytoskeleton and assembling signalling regulatory complexes. The last 30 carboxyl residues of NHERF1 and NHERF2 form the EBDs [ezrin, radixin and moesin (ERM)-binding domain]. The curre...

متن کامل

Role of PDZ domain-containing proteins and ERM proteins in regulation of renal function and dysfunction.

Hormonal, dietary, and metabolic factors play an important role in regulation of renal proximal tubular apical membrane sodium-hydrogen (Na/H) exchange and sodium-phosphate (Na/Pi) cotransport and basolateral membrane sodium-potassium-ATPase (Na-K-ATPase) activity by diverse cellular mechanisms including transcriptional, translational, and posttranslational mechanisms. Recent work in this area ...

متن کامل

NHERF: targeting and trafficking membrane proteins.

Vectorial ion transport initiated by Na+/H+ exchanger isoform 3 (NHE3) mediates the reabsorption of NaCl and NaHCO(3) in renal proximal tubule cells. NHE3 activity is modulated by numerous physiological stimuli. Biochemical and cellular experiments identified Na+/H+ exchanger regulatory factor (NHERF) as a protein cofactor essential for cAMP-mediated inhibition of NHE3 activity. Identification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2013